Search results for " 05A15"

showing 4 items of 4 documents

Pattern statistics in faro words and permutations

2021

We study the distribution and the popularity of some patterns in $k$-ary faro words, i.e. words over the alphabet $\{1, 2, \ldots, k\}$ obtained by interlacing the letters of two nondecreasing words of lengths differing by at most one. We present a bijection between these words and dispersed Dyck paths (i.e. Motzkin paths with all level steps on the $x$-axis) with a given number of peaks. We show how the bijection maps statistics of consecutive patterns of faro words into linear combinations of other pattern statistics on paths. Then, we deduce enumerative results by providing multivariate generating functions for the distribution and the popularity of patterns of length at most three. Fina…

FOS: Computer and information sciencesMultivariate statisticsDistribution (number theory)Discrete Mathematics (cs.DM)Interlacing0102 computer and information sciences02 engineering and technology[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]01 natural sciencesTheoretical Computer ScienceCombinatoricsStatistics[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]05A05 (Primary) 05A15 05A19 68R15 (Secondary)0202 electrical engineering electronic engineering information engineeringFOS: MathematicsDiscrete Mathematics and CombinatoricsMathematics - CombinatoricsLinear combinationMathematicsDiscrete mathematicsMathematics::Combinatorics020206 networking & telecommunicationsComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Derangement010201 computation theory & mathematicsBijectionCombinatorics (math.CO)AlphabetComputer Science::Formal Languages and Automata TheoryComputer Science - Discrete Mathematics
researchProduct

Le cône diamant symplectique

2009

Resume Si n + est le facteur nilpotent d'une algebre semi-simple g , le cone diamant de g est la description combinatoire d'une base d'un n + module indecomposable naturel. Cette notion a ete introduite par N.J. Wildberger pour sl ( 3 ) , le cone diamant de sl ( n ) est decrit dans Arnal (2006) [2] , celui des algebres semi-simples de rang 2 dans Agrebaoui (2008) [1] . Dans cet article, nous generalisons ces constructions au cas des algebres de Lie sp ( 2 n ) . Les tableaux de Young semi-standards symplectiques ont ete definis par C. De Concini (1979) [4] , ils forment une base de l'algebre de forme de sp ( 2 n ) . Nous introduisons ici la notion de tableaux de Young quasi standards symplec…

Mathematics(all)20G05 05A15 17B10tableaux de YoungGeneral Mathematics010102 general mathematicsreprésentations0102 computer and information sciencestableaux de Young.[ MATH.MATH-CO ] Mathematics [math]/Combinatorics [math.CO]01 natural sciencesAMS 2000 class. : 20G05 05A15 17B10Algébre de Lie symplectique010201 computation theory & mathematics[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]Algèbre de Lie symplectiqueMathematics - Combinatorics0101 mathematicsMathematics::Representation TheoryHumanitiesMathematics
researchProduct

Combinatorial Gray codes for classes of pattern avoiding permutations

2007

The past decade has seen a flurry of research into pattern avoiding permutations but little of it is concerned with their exhaustive generation. Many applications call for exhaustive generation of permutations subject to various constraints or imposing a particular generating order. In this paper we present generating algorithms and combinatorial Gray codes for several families of pattern avoiding permutations. Among the families under consideration are those counted by Catalan, Schr\"oder, Pell, even index Fibonacci numbers and the central binomial coefficients. Consequently, this provides Gray codes for $\s_n(\tau)$ for all $\tau\in \s_3$ and the obtained Gray codes have distances 4 and 5.

Mathematics::CombinatoricsFibonacci numberPattern avoiding permutationsGeneral Computer ScienceOrder (ring theory)Generating algorithms94B25Gray codesCombinatorial algorithms05A05; 94B25; 05A15Theoretical Computer ScienceCombinatoricsSet (abstract data type)Constraint (information theory)Gray codePermutation05A05ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONFOS: MathematicsMathematics - CombinatoricsCombinatorics (math.CO)05A15Binomial coefficientComputer Science(all)MathematicsTheoretical Computer Science
researchProduct

Jeu de Taquin and Diamond Cone for so(2n+1, C)

2020

International audience; The diamond cone is a combinatorial description for a basis of a natural indecomposable n-module, where n is the nilpotent factor of a complex semisimple Lie algebra g. After N. J. Wildberger who introduced this notion, this description was achieved for g = sl(n) , the rank 2 semisimple Lie algebras and g = sp (2n).In this work, we generalize these constructions to the Lie algebra g = so(2n + 1). The orthogonal semistandard Young tableaux were defined by M. Kashiwara and T. Nakashima, they index a basis for the shape algebra of so(2n + 1). Defining the notion of orthogonal quasistandard Young tableaux, we prove that these tableaux describe a basis for a quotient of t…

quasistandard Young tableauMathematics::Quantum AlgebraShape algebrajeu de taquinMSC: 20G05 05A15 17B10[MATH] Mathematics [math][MATH]Mathematics [math]Mathematics::Representation Theorysemistandard Young tableau
researchProduct